一种基于ST-GCN的鱼群摄食强度预测方法
本发明属于鱼类养殖投喂技术领域,公开了一种基于ST‑GCN的鱼群摄食强度预测方法,包括以下步骤:构建特征提取模型并进行训练,将鱼群摄食行为视频图像输入到训练后的特征提取模型中进行时空特征提取,获得鱼群个体与时间序列一一对应的空间位置信息;获取摄食强度信息,基于摄食强度信息为空间位置信息做数据标注,获得标注后的空间位置信息;构建初始摄食强度预测模型,基于标注后的空间位置信息对初始摄食强度预测模型进行训练,获得目标摄食强度预测模型,基于目标摄食强度预测模型对鱼群的摄食强度进行预测。本发明构建的鱼群摄食强度预测模型,在训练模型所需的数据量大大降低,并且对鱼群摄食强度的预测拥有更高的准确率。
对鱼类摄食强度评估模型的研究主要分为两个方面:一是采用CNN分类算法对鱼群摄食行为图像进行识别,二是对图像中鱼群个体的行为进行特征提取,然后通过人为设计的摄食强度指数进行评估或者通过svm、lstm等算法进行时间序列预测。CNN分类算法在训练和预测过程中,每一帧图像相互独立,而非一条完整的时间序列,因此,模型只能学习到图像中鱼群空间位置的特征,却忽略了速度、转向角等同样与评估鱼群食欲息息相关的特征,当图像出现昏暗、对比度低,背景环境复杂,光线干扰等情况时,只通过学习图像特征往往难以取得良好的效果。目标检测算法也有很多局限性,由于鱼类养殖池环境往往十分复杂,存在有大量噪声、光线干扰、鱼群堆叠等现象,使得很难得到效果良好的鱼类前景;同时,目标检测算法会通过预处理将图像二值化,导致图像的颜色特征的缺失。除了目标检测算法外,还可以使用centertrack、fairmort等追踪算法对鱼类个体进行跟踪,通过只追踪鱼头的方法,虽然大大减少了鱼群身体遮挡造成的影响,但在高摄食强度的情况下,鱼群剧烈抢食,头部追踪同样无法获得好的效果。
本发明的鱼群摄食强度预测方法在获取中、弱摄食强度等级的数据集上提高了鱼群的跟踪准确率,并能够对高摄食等级下的鱼群特征信息的缺失值进行补全,实现了特征增强。
本发明构建的鱼群摄食强度预测模型,在训练模型所需的数据量大大降低,并且对鱼群摄食强度的预测拥有更高的准确率。
联系方式
崔鸿武
18660279665
山东省青岛市市南区南京路106号
请填写以下信息
联系人:
手机号:
单位名称:
备注: